Improving smallholder farmer incomes through strategic market development in mango supply chains in southern Vietnam

> Annual Workshop December 2020

Activity 2.2 Alternative to Paclobutrazol and extending mango flowering study

Nguyen Van Son SOFRI

Cameron McConchie Griffith University

Implementing Agency
SIAEP
SIAE

© Griffith University 2018

Aim & objective

Activity 2.2

Expanding seasonal flowering

Research questions

- What on-farm innovations are likely to generate the most significant impacts to reduce losses, increase productivity and quality outputs that will improve returns directly related to smallholder incomes?
- What innovations have the most cost-effective and positive impacts on productivity, losses, quality and harvest timing, leading to improved price and farmer incomes?
- What tools will support sharing of innovations with wider mango farming communities?
- What are the roles and responsibilities of the key local partners to ensure the innovation successes are mainstreamed within the communities in southern Vietnam?

Activity focus

- Evaluate alternative product to PBZ that could be used should to maintain high yields in Cat Hoa Loc should PBZ no longer be available
- Determine whether chemical inputs could be reduced using alternative gibberellin synthesis inhibitors
- Build capacity to evaluate orchard responses to chemical treatments that manipulate flowering and fruit production

Overview

Background

- Production in southern Vietnam is PBZ dependent
- Used to reduce tree vigor, improve flowering and increase yield
- Soil application
- Farmer surveys indicate very high amounts are used
- Levels of PBZ affect fruit development, ripening and fruit quality
- Focus to reduce chemical inputs in Vietnamese farming

Issues with PBZ

- Widely applied in excessive levels
- Affects above and below ground tree development
 - reduces root growth
 - modifies nutrient uptake
- Potentially contaminates ground water and soil
- Microbes develop rapidly to break down PBZ, especially with added organic matter (manure) and fertiliser application (NPK)

Crop cycle

Treatments

Prohexadione calcium (Regalis Plus ®)

- Inhibits late stage gibberellin synthesis
- Successfully used on mangoes in Mexico
- Short lived with quick breakdown in the soil
- No benefit from excessive application
- Widely used internationally in pome fruit

Uniconazole (Stoplant 5%)

- Acts at the same stage of gibberellin synthesis as PBZ to inhibit production
- Shown to be effective in Vietnam as a soil applied inhibitor
- Can be applied as a foliar treatment requiring reduced chemical inputs
- Excessive use may affect flower fertility
- Used as foliar treatments in mango and avocado

Trial design

- Proposed as fully randomised block design with 4 treatments and six replicates
- ▶ Within in each block the position of the treatments was randomised
- ► The results checked for normality, transformed as required and analysed by ANOVA
- Note 3 treatments were blocked and repeated 6 times and analysed by T-test
- Treatments
 - Control (untreated)
 - Paclobutrazol (1g.m⁻¹ canopy diameter)
 - Prohexadione Calcium (single spray 1500 mg.l⁻¹⁾
 - Uniconazole (4g ai.tree⁻¹)

Schedule 2020 - 2021

	Aug	Sept	Oct	Νον	Dec	Jan	Feb	Mar	Apr	May
Prune										
MKP										
Growth regulators										
KNO ₃										
Flowering										
Bagging										
Harvest										
Final Report										

© Griffith University 2018

SOFRI farm

	Diameter				No. of	No. of infected shoots by Pests	
	W-E S-N Avg.		Height (m)	shoots			
Tree 1	2.7	3	2.85	2.5	171	9	
Tree 2	2.6	2.7	2.65	2.2	141	7	
Tree 3	2.5	2.6	2.55	2.3	139	6	
Tree 4	2.6	2.95	2.78	2.3	152	10	
Tree 5	2.2	2.63	2.42	2.3	132	9	
Tree 6	2.3	2.9	2.60	2.6	144	17	
Tree 7	3.2	2.9	3.05	2.6	213	5	
Tree 8	2.7	2.4	2.55	2.2	124	8	
Tree 9	2.9	2.5	2.7	2.6	144	10	
Tree 10	2.6	2.4	2.5	1.9	130	7	
Tree 11	2.7	3.3	3.0	2.3	109	6	
Tree 12	2.3	1.9	2.1	2.1	123	17	
Tree 13	2.5	3.1	2.8	2.5	163	7	
Tree 14	2.5	3.3	2.9	2.4	146	7	
Tree 15	3.7	3	3.35	2.4	215	6	
Tree 16	2.1	2.6	2.35	2.2	115	3	
Tree 17	2.2	2.4	2.3	2.3	91	4	
Tree 18	3.3	2.9	3.1	2.6	168	7	
Tree 19	2.5	2.9	2.7	2.2	138	5	

© Griffith University 2018

Outputs & outcomes

Outputs

- ► The effects of growth inhibitors on flower development assessed
- The effects of growth inhibitors on yield and fruit quality assessed
- Comparisons of production using alternative growth inhibitors with results using paclobutrazol made.

Outcomes

Recommendations for alternative growth inhibitors as production substitutes for high value markets