Agronomic Trials and Demonstrations in Lao PDR: preliminary result and discussion

Mid-Term review Vientiane, Laos 15-19 January, 2018

Australian Government

Australian Centre for International Agricultural Research

International Center for Tropical Agriculture Since 1967 Science to cultivate change

Introduction

- Location of trials
- Current trials and purpose
- Preliminary discussion trials not harvested yet
- Constraints and opportunities
- Plans for 2018

Trial sites

- Two province: (Xayaburi and Bolikhamxay)
- Four sites:
- Bolikhamxay: (1) Bolikhan and
 (2)Viengthong
- Xayabulri: (3) Paklay and (4) Kheanthao

What we did and why

- Variety assessment 7 varieties (4 locations)
 - Farmers have little knowledge of varieties they are growing
 - Performance varies in different location
 - Develop models for dissemination well adapted varieties
- Nutrient management 6 treatments (4 locations) -
 - No farmers currently using fertiliser.
 - Demonstrate the economic returns of fertiliser treatments,
 - Risk analysis
 - Work with Government and industry to promote robust recommendation
 - Promote the development of easy to use fertiliser blends (or import from Thailand)
- Intercropping 4 intercropping systems (1 location)
 - Diversify income sources
 - Control erosion

What varieties were used

7 Varieties

- 1 Kasetsart 50 (KU 50)
- 2 Rayong 9 (R9)
- 3 Rayong 11 (R11)
- 4 Rayong 72 (R72)
- 5 KM 140
- 6 KM 21-12
- 7 Current planting variety by local farmers

KU 50

R11

Fertiliser treatments

Trootmont	Actual fertilizer application (kg ha-1)			
Ireatment	Urea (46-0-0)	TSP (00-42-00)	KCL	Manure
Control (00N-00P-00K)	-	-	-	-
NP low rate without K (40N-10P-0K)	87.00	54.60	-	-
Balanced NPK low rate (40N-10P-40K)	87.00	54.60	80.30	-
Balanced NPK low rate (40N-10P-40K)+Manure (5 t/ha)	87.00	54.60	80.30	5,000
Available fertilizer in local market (15-15-15) at 40N-40P ₂ O ₅ -40K ₂ O	266.65			-
Balanced NPK high rate (80 N-20P-80K)	173.90	109.10	160.60	-

Difficult to obtain in local markets

Commonly used on rice and available in markets

Intercropping

• We conducted one site at the farmer field in Paklay site (no.3)

Cassava: Rayong 72 Experimental design: RCBD Replication: 3 reps. Spacing:

- Cassava : 1.2m x 0.8m
- Associated crops: 0.3m x 0.3 m (planted at the middle of rows of cassava)
- Plot size: 5m x 6m=30 m²

	Treatments
1	Cassava monoculture
2	Cassava + mungbean
3	Cassava + peanut
4	Cassava + yard long bean

Preliminary observation and discussion

Intercropping

• ACIAR LARF activity

- Cassava intercropping conducted in 2016-17.
- Linked with ACIAR project with project support
- Trial site in Kheanthao

Treatment	Legumes	cassava yield	Total yield	
	t ha ⁻¹	t ha ⁻¹	t ha⁻¹	
Cassava only	-	19.8	19.8	
Cassava +Mung bean	0.83	21.3	22.13	
Cassava+Peanut	0.71	25.5	26.21	
Cassava+Soy bean	0	24.7	24.7	

• ACIAR value chain project

- Did not get data of legumes due to crop failure
- Low germination of legumes due to high rainfall
- Pest injection during flowering stage
- Farmer need to try again in 2018 as the remains some interest

Preliminary assessment of genetic impact

- Witches broom (CWB)
- Bacteria bright (CBB)
- KU 50 showed more symptom than other
- Infected planted in farmer fields were observation

KU50

Rayong11

Preliminary assessment of soil management

- Trials established on land with low fertility after several years of production
- Symptoms more evident in low and zero treatments
- Plan to monitor incidence and severity during harvest

Monitoring witches broom

Symptom variation of cassava witches' broom disease

Mild

Leaf is grown and expanded

Not very stunted

GCIAT

Severe

Many small leaves with short internodes Leaf proliferation from the middle of stem Dwarf plant Leaf growth is inhibited, with dead leaves

Challenges and constraints

- Disease cassava witches broom
- Interest from private sector and previous relationship with farmers
 - Own farmers money, not trusted by farmers
- Availability of fertiliser in Districts or Province markets
 - Need to purchase from Thailand
- Soil fertility declining
- Lack of cleaned planting material
- Farmers lack of knowledge: Soil fertility management, pest-diseases management and suitable variety.

Opportunities and new ideas

- Demonstration on soil fertility management and enhance access to suitable fertiliser
 - Link with MOIC and private sector
- Evaluation of new clones at ARC
 - Assess promising lines with farmers later in the project after initial screening
- Demonstration of disease management
 - More systematic evaluation and demonstrations established.
- Developing systems and markets for accessing clean planting material
 - Need for clean source as current material in trials in high risk
- Developing extension material in conjunction with trader brochures

Plans for linking with value chain actors

- Who are the stakeholders
 - Starch factories, Chip factories, traders, DAFO, MOIC
- Current activities and partnerships
 - Limited formal arrangements with private sector with plans to involve them in upcoming field days
 - Factories and traders have acted as key informants, show interest, but not commit resources yet.
- Plans for 2018
 - Field day during harvest of existing trials
 - Meeting with DAFO, MOIC, Factories, Farmer leaders at District/Province level
 - Central policy dialogue in 2018 and include non project province stakeholders
 - Identify key traders with interest to establish trials and multiplication sites
 - Primary clonal selection of 39 accessions.
 - Study tour to Thailand
 - Distribute handbook and posters for farmers

Australian Government

Australian Centre for International Agricultural Research

