Climate Change and Agriculture in the EGP

February 2019

Presentation Overview

- Provide an overview of projected changes to EGP climate over the period to 2050 and beyond
 - Temperature, precipitation, extreme weather events
 - Climate variability
- Identify potential impacts on agriculture in the EGP
 - Crop yields
 - Crop suitability
 - Carbon dioxide fertilisation
- Potential options for reducing climate risk

The Climate has already changed

- Over past 50 years the region's climate has changed
 - Mean annual temperatures have increase by 1°C (2°C+ in HKH)
 - Extreme weather intensity has increased (heat, rainfall intensity)
 - EGP mean rainfall has decreased slightly
 - Seasonal river flows have changed
- There have been **observed impacts on agriculture**
 - Length of growing season (slightly shorter Rabi)
 - Optimal crop planting dates/chilling hours
- Impact on EGP have so far been modest but will intensify

Projecting Future Climate Change?

- Projecting future climate change is complex and subject to uncertainty
 - But the underlying trends are clear
- Global Circulation Models (GCMs) used to project future climate
 - Good at a global/regional level but coarse at a local scale
 - Downscaling and regional models can increase granularity
- Future emission scenarios and Concentration Pathways (RCPs)
 - RCP 2.5 (low carbon) RCP 8.5 (carbon intensive)
 - The difference not large in the medium term but very different in long term

Climate Projections for the EGP

- Comparing projection results across the literature can be confusing
 - Different models, base years, timeframe and emission scenarios used

• Level of confidence in projections varies

- Good agreement on temperature, climate variability and extreme weather
- Reasonable confidence on seasonal trends
- Lower confidence on annual rainfall trends
- Limited EGP specific modelling and downscaling

Temperature Changes

- High level of confidence in temperature projections
- Average mean temperatures in EGP
 - 1°C-1.5°C higher by mid century (2°C+ in HKH)
 - 2.5°C 4.0°C+ by 2100 (higher in western South Asia and HKH)
- Warming more pronounced in winter than summer
- Night minimums increase more than daytime maximums
- Extreme heat days increase in frequency and intensity
 - There is projected to be 30-40 more extreme heat days by mid century
 - 2°C of warming would result in a 2-3 fold increase in extreme heat days
 - 4°C of warming would result in a 10 fold increase

Precipitation Trends and Water Availability

- Subject to much greater uncertainty confidence levels are low-to-medium
- Mean annual rainfall is expected to increase by around 5-10% by mid century
 - The higher the warming the higher the likely increase in rainfall)
 - At 4°C 20-30%+ increase in rainfall
- Most of the increase will occur in the summer monsoon
 - Rabi season may increase slightly for EGP but most of western South Asia/IGP get less
 - There is higher risk of drier winters
- Potential evaporation is projected to increase by 5-7% by 2050 (higher in winter)
 - Potentially offsetting any precipitation increases
- Rainfall intensity will increase mainly during the summer monsoon
- River flow regimes changes: lower winter and early summer flows and higher early spring late summer flows

Climate Variability and Extreme Weather

- All models predict an increase in climate variability
 - Wetter years become wetter and dry years drier
- The frequency and intensity of droughts and floods will increase
 - In line with projections for rainfall intensity, temperatures and evaporation
- Significantly increase in extreme heat days and less extreme cold days
- Sea level rise long slow process (century timescales)
 - 8-12cm by 2050
 - 40-70cm by 2100 (possibly 1m) several metres of rise already committed

Projected Impacts on EGP Agriculture

- Predicting future agricultural yields is subject to uncertainty due to the complex mix of climatic, ecosystem and human variables
- Many of the EGP crops are already at or beyond optimal conditions areas
 - Projected increase in average mean temperatures will push crops to less optimal growth conditions
 - Each 1°C rise above optimal conditions reduces wheat yields 6%, rice 3% and maize 7% - declines in wheat and rice yields in EGP expected to be higher
- Higher average temperatures (and extreme heat) at critical stages of growth cycle reduce grain set, grain filling period and reduce fertilisation rates
 - Yields are expected to fall 10-15% by mid century
- By late century the EGP likely to be unsuitable for current crops

Impacts on EGP Agriculture (cont)

- Livestock productivity decreases as temperature rise but inland fisheries may experience increased productivity/breeding season
- Risk of soil moisture deficits (especially in winter) increases and amplify temperature effects
 - Evaporation and river flow regime changes may result in seasonal shortages
 - Access to reliable irrigation and careful use of groundwater esstential
- Carbon dioxide concentrations will impact plant productivity
 - Fertilisation effect will result in higher growth rates and yields (10-20%)
 - Increased water use efficiency will reduce water use/unit output
 - Nutritional levels of crops tend to fall at higher concentrations (zinc/iron/protein)
 - Phosphorous use efficiency falls and plant phosphorous demand increases
 - Impact on insect/plant interactions

Impacts on EGP Agriculture (cont)

- Impact of changes to insect/pollinator/plant interactions in EGP unknown and requires much more targeted research and analysis
 - Based on global studies the changes are expected to reduce yields
 - Not possible to draw definitive conclusions
- Overall the impact of the expected changes are likely to be overwhelmingly negative on EGP agriculture
 - This may result in reduced food security
 - Millions of rural livelihoods are at stake
- Much more EGP specific climate change impact research is needed to improve our understanding of the timing and magnitude of impacts

Measures to Reduce Climate Risks

 Options exist to reduce the risks of future climate change – or at least buy time

Measures include

- Introducing/developing more heat tolerant crops and cultivars
- Improved farm level water efficiency
- Rural income diversification strategies (including moves out of agriculture)
- Improved flood early warning systems and farm infrastructure protection
- Improved drought and seasonal forecasting/information dissemination
- Adopting less carbon intensive production systems (soil carbon)
- CASI approaches can help in this regard