Best Worst Scaling workshop

Michael Burton

School of Agriculture and Environment

University of Western Australia

May 2021

Institutions to support intensification, integrated decision making and inclusiveness in agriculture in the East Gangetic Plain

(ACIAR Project # LWR-2018-104)

Funding Organisation & Project Partners

Australian Centre for International Agricultural Research

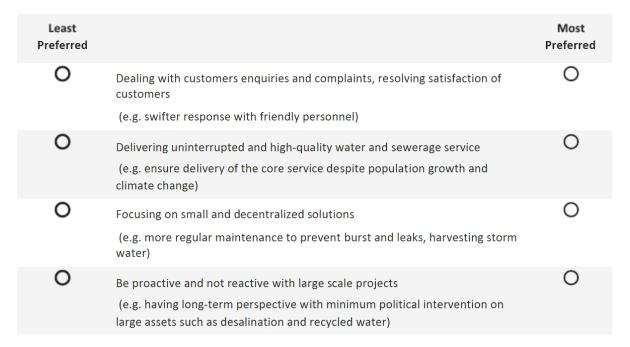
INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Cl's

Prof Lin Crase (Project Leader) Professor Mohammad Jahangir Alam Dr Avinash Kishore Dr Bishnu Dev Pant

The structure: 5 sessions

- 1. Conceptual issues and design
- 2. Models of choice and ways to analysis
- 3. Interpretation/presentation of results
- 4. Anchors and absolute rankings, and other issues
- 5. Resources and software to implement


Conceptual issues

- Best Worst Scaling: a method to generate a ranking of things
 - If you want to quantify the extent of differences between items
 - If you have a large number of items
- More efficient and reliable than other methods (i.e. ratings: Chrzan et al 2006, Burton et al 2021))
- NB: there are three different types of BWS
- Case 1: object
- Case 2: profile
- Case 3: multi-profile

Case 1: object

- If you want to rate a number of discrete objects
- Create subsets of items and select "best" and "worst"

1. Please choose your most preferred and least preferred service from your water provider

Khosroshahi, S., Crase, L., Cooper, B., Burton, M. (2021) Matching customers' preferences for tariff reform with managers' appetite for change: The case of volumetric-only tariffs in Australia *Australian Journal of Agricultural and Resource Economics*.

Case 2: profile

- Rating elements of a product/policy etc
- Create versions of the product in a profile and select best and worst elements

Table 2 Example of a B-W choice set presented to respondents

Imagine you are at your usual grocery store, which of these attributes do you think are the most important and least important when purchasing a craft beer (choose only one as most important and one as least important)?

Most important		Least important
	Taste	
	Country of origin	
	Alcohol content	
	Certification (organic)	

Lerro, M., Marotta, G., Nazzaro, C. (2020) Agricultural and Food Economics (2020) 8:1

Case 3: multi-profile

• A profile with attributes, but choosing across profiles

Features	Option A Maintain Current Situation	Option B Use water to:	Option C Use water to:	
Culturally important waterholes	No natural waterholes remain	Preserve 5 natural waterholes	Preserve 3 natural waterholes	
Water supply for towns	Groundwater supply falling	Supply 60 additional years of water	Supply 20 additional years of water	
Grazing land	120,000 hectares degraded	Restore 15,000 hectares	Restore 75,000 hectares	
Household cost Per year for 5 years	\$0	\$50	\$100	
I like this option MOST: Click on one box only	Option A	Option B	Option C	
I like this option the LEAST: Click on one box only	Option A	Option B	Option C	

Focus now on case 1: object based

- Why not use Likert scales instead? i.e. rate each object on a scale, and then compare across objects?
 - Need to maintain consistency in calibration of the scale across objects
 - People may use different interpretation of end points
 - People tend to 'cluster' responses at end points
 - And at the limit can give all objects the same rating i.e. "very important"
- BWS avoids those issues
 - And has been found to be more consistent and reliable, even with young children

Burton, N., Burton, M., Fisher, C., González Peña, P., Rhodes, G. & Ewing, L Beyond Likert ratings: Improving the robustness of developmental research measurement using best-worst scaling *Behavior Research Methods* for thcoming

- Repeated choice of best and worst
 - Need subsets of items
- Paired comparisons- not often used
 - Pair every object with every other: pick 'best' in each pair
 - Large number of pairs: J objects -> J(J-1)/2
 - J=10-> 45 pairs
 - Not efficient

- Balanced Incomplete Block Designs (BIBD)
 - Designs with more than 2 items per 'block' or question
 - Balanced in that each item appears the same number of times
 - And co-occurs with other items the same number of times
 - But its not a complete factorial
- BIBD do not exist for all J
- Catalogues of BIBD exist

18

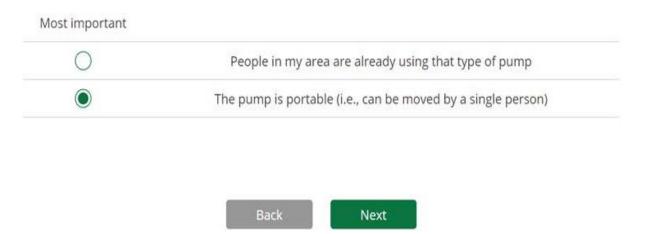
The BWS object case

Table 2.3 Illustrative list of potential BIBDs

							lustrative list of	potential BIBD	S
Design no.	Objects (v)	No. sets (b)	Occurs (r)	Set size (k)	Co-occurs (λ)				
1	4	4	3	3	2	Design no.	Objects (v)	No. sets (b)	
2	5	5	4	4	3				
3	5	10	6	3	3	20	12	44	
4	6	10	5	3	2	21	12	33	
5	7	7	3	3	1	22	12	22	
6	7	7	4	4	2	23	13	13	
7	7	21	15	5	10	24	13	26	
8	8	14	7	4	3	25	13	26	
9	9	12	4	3	1	26	13	39	
10	9	18	8	4	3	27	14	26	
11	0	12	0	4	5	28	15	35	
	9	18	10	5	5	29	15	35	
12	, ,		10	3	5	30	16	20	
13	10	15	6	4	2	31	16	16	
14	10	30	9	3	2	32	16	24	
15	10	18	9	5	4	33	16	80	
16	10	15	9	6	5	34	16	48	
17	11	11	5	5	2	35	19	57	
18	11	11	6	6	3	36	19	57	
19	11	55	15	3	3	37	21	21	
						38	21	70	

Design no.	Objects (v)	No. sets (b)	Occurs (r)	Set size (k)	Co-occurs (λ)
20	12			2	2
20	12	44	11	3	2
21	12	33	11	4	3
22	12	22	11	6	5
23	13	13	4	4	1
24	13	26	6	3	1
25	13	26	12	6	5
26	13	39	15	5	5
27	14	26	13	7	6
28	15	35	7	3	1
29	15	35	14	6	5
30	16	20	5	4	1
31	16	16	6	6	2
32	16	24	9	6	3
33	16	80	15	3	2
34	16	48	15	5	4
35	19	57	9	3	1
36	19	57	12	4	2
37	21	21	5	5	1
38 -	21	70	10	3	1
39	21	42	12	6	3
40	25	30	6	5	1
41	25	50	8	4	1
42	25	100	12	3	1

- Balanced Incomplete Block Designs (BIBD)
 - Designs with more than 2 items per 'block' or question
 - Balanced in that each item appears the same number of times
 - And co-occurs with other items the same number of times
 - But its not a complete factorial
- BIBD do not exist for all J
- Catalogues of BIBD exist
- Can be generated in R (also see later)


Table 2.2 A BIBD for nine objects

	C	bject	s in						
Subset each subset			bset		Issues in each subset	h subset			
1	2	4	8	K-12 education	Parks and recreation	Broadband access/speed			
2	1	4	5	Streets and roads	Parks and recreation	Sports facilities			
3	4	7	9	Parks and recreation	Job creation	Tourism facilities			
4	3	4	6	Tertiary education	Parks and recreation	Housing developments			
5	1	2	3	Streets and roads	K-12 education	Tertiary education			
6	2	5	7	K-12 education	Sports facilities	Job creation			
7	2	6	9	K-12 education	Housing developments	Tourism facilities			
8	1	8	9	Streets and roads	Broadband access/speed	Tourism facilities			
9	5	6	8	Sports facilities	Housing developments	Broadband access/speed			
10	3	7	8	Tertiary education	Job creation	Broadband access/speed			
11	1	6	7	Streets and roads	Housing developments	Job creation			
12	3	5	9	Tertiary education	Sports facilities	Tourism facilities			

- What if no BIBD for your J?
 - Mix and match existing designs (see Louviere et al 2015 p19)
 - Approximations of BIBD designs (e.g. sawtooth)
- Which is best design to use?
 - Do you want to estimate individual ranks?
 - Need objects to occur at least 4 times
 - How many choice sets can your respondents cope with?

Considering the following sets of items, please choose what you believe is the MOST important characteristic of a pump set in each pair

3/4

Sophie Lountain, Bethany Cooper, Lin Crase and Michael Burton

Technology, gender and sustainable livelihoods: Insights into preferences for irrigation pumps in West Bengal

Paper prepared for Institutions to support intensification, integrated decision making and inclusiveness in agriculture in the East Gangetic Plain

Part 2

Case 1: Models of choice and ways to analysis

Case 1: Models of Choice

- Respondents are being asked to select best and worst from a subset of objects
 - NB we will use Best/Worst here but framing depends on context
- Assume that there is some latent measure for each object u(i)
 - For the set of objects in the set they will pick the one with the highest/lowest utility as best/worst
 - With an appropriate assumption about the nature of the random elements of choice this can be represented as a multinomial logit model:

Case 1: Probability of picking best and/or worst

If you assume there are random elements to choice of a particular form, then it's a multinomial logit model

$$P_B(i \mid X) = \frac{\exp(\beta_i)}{\sum_{j \notin X} \exp(\beta_j)}$$
$$P_W(i' \mid X) = \frac{\exp(-\beta_{i'})}{\sum_{j \notin X} \exp(-\beta_j)}$$

Case 1: Probability of picking best-worst pair

Assume that respondent compared all possible combinations and picked the combination with largest difference (MAXDIF)

$$P_B(ii' \mid X) = \frac{\exp(\beta_i - \beta_{i'})}{\sum_{\substack{j, j' \notin X \\ j \neq j'}} \exp(\beta_j - \beta_{j'})}$$

- Sequential best/worst using aggregate data
- If we just use 'best' choices:
- Estimate a multinomial logit model using data from all individuals

$$P_B(i \mid X) = \frac{\exp(\beta_i D_i)}{\sum_{j \notin X} \exp(\beta_j D_j)}$$

- If we just use 'worst' choices:
- Estimate a multinomial logit model using data from all individuals, but multiply all dummy variables by -1

$$P_{w}(i'|X) = \frac{\exp(\beta_{i'}(-D_{i'}))}{\sum_{j \notin X} \exp(\beta_{j}(-D_{j}))}$$

- If we use 'best' and 'worst' choices:
- 'stack' the BW data into a single data frame
- Issue: should the item selected as best be included in the set for worst?
 - Drop, if you are sure about order of choice
 - Some use complete sets for both (e.g. sawtooth)

• An example of how the data is prepared

Analysis

37

Table 2.15 Selection of raw data for conditional logit model of best and worst

Presence (1 or -1)/absence (0) of objects															
ID	Total sets	Set	New set	BW	Option	Object #	02	O3	04	05	06	07	08	09	Choice
1	1	1	1	1	1	2	1	0	0	0	0 .	0	0	0	1
1	1	1	1	1	2	4	0	0	1	0	0	0	0	0	0.
1	1	1	1	1	3	8	0	0	0	0	0	0	1	0	0
1	2	1	2	-1	2	4	0	0	-1	0	0	0	0	0	0
1	2	1	2	-1	3	8	0	0	0	0	0	0	-1	0	1
1	3	2	3	1	1	1	0	0	0	0	0	0	0	0	0
1	3	2	3	1	2	4	0	0	1	0	0	0	0	0	1
1	3	2	3	1	3	5	0	0	0	1	0	0	0	0	0
1	4	2	4	-1	1	1	0	0	0	0	0	0	0	0	0
1	4	2	4	-1	3	5	0	0	0	-1	0	0	0	0	1

- Because of singularity, need to drop one item from model: it becomes the 'base' with zero weight
- Doesn't matter which one is dropped
- Parameter estimates now give preference ratings for objects

Case 1: A note on coding

- **Dummy coding**: dummy variable takes a value of 1 if present in set, zero if not
 - Parameters are estimated relative to base
- Effects coding: dummy variable takes a value of 1 if present in set, zero if not, and -1 if not and the base case is present
 - Parameters are estimated relative to the mean of all parameters
- Has no impact on the explanatory power of the model, just interpretation

(see Daly et al 2016)

An example: dummy coding

Conditional (fixed-effects) logistic regression

Number of obs	=	1,224
LR chi2(9)	=	55.62
Prob > chi2	=	0.0000
Pseudo R2	=	0.0656

Log likelihood = -396.39789

choi	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
dl	.569771	.2738044	2.08	0.037	.0331242	1.106418
d2	.0060952	.260852	0.02	0.981	5051653	.5173557
d3	1812733	.2453639	-0.74	0.460	6621778	.2996312
d4	-1.109367	.2766381	-4.01	0.000	-1.651567	5671662
d5	0949606	.2532575	-0.37	0.708	5913362	.4014151
d6	1759256	.2666333	-0.66	0.509	6985172	.3466661
d7	.4912596	.2992907	1.64	0.101	0953394	1.077859
d8	.1055038	.2751919	0.38	0.701	4338624	.64487
d9	4483684	.2744141	-1.63	0.102	9862102	.0894734

An example: effects coding

Conditional (fixed-effects) logistic regression

Number of obs	=	1,224
LR chi2(9)	=	55.62
Prob > chi2	=	0.0000
Pseudo R2	=	0.0656

Log likelihood = -396.39789

choi	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
d1e	.6534975	.1779575	3.67	0.000	.3047071	1.002288
d2e	.0898217	.1575392	0.57	0.569	2189495	.3985929
d3e	0975468	.1582635	-0.62	0.538	4077376	.2126441
d4e	-1.02564	.1862645	-5.51	0.000	-1.390712	6605685
d5e	0112341	.1675333	-0.07	0.947	3395933	.3171252
d6e	0921991	.1749942	-0.53	0.598	4351814	.2507832
d7e	.5749861	.1969912	2.92	0.004	.1888905	.9610817
d8e	.1892303	.1747858	1.08	0.279	1533436	.5318041
d9e	3646419	.1737879	-2.10	0.036	7052599	0240238

Compared:

Log likelihood = -396.39789

	Coef.	choi		Coef.	choi
0.5636758	.6534975 .0898217 0975468 -1.02564 0112341 0921991 .5749861 .1892303 3646419	d1e d2e d3e d4e d5e d6e d7e d8e d9e	0.5636758	.569771 .0060952 1812733 -1.109367 0949606 1759256 .4912596 .1055038 4483684	d1 d2 d3 d4 d5 d6 d7 d8 d9

Log likelihood = -396.39789

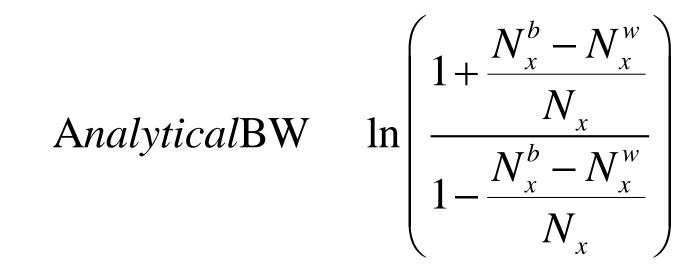
The value of the base:

choi	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
d1e	.6534975	.1779575	3.67	0.000	.3047071	1.002288
d2e	.0898217	.1575392	0.57	0.569	2189495	.3985929
d3e	0975468	.1582635	-0.62	0.538	4077376	.2126441
d4e	-1.02564	.1862645	-5.51	0.000	-1.390712	6605685
d5e	0112341	.1675333	-0.07	0.947	3395933	.3171252
d6e	0921991	.1749942	-0.53	0.598	4351814	.2507832
d7e	.5749861	.1969912	2.92	0.004	.1888905	.9610817
d8e	.1892303	.1747858	1.08	0.279	1533436	.5318041
d9e	3646419	.1737879	-2.10	0.036	7052599	0240238

. nlcom -(_b[d1]+_b[d2]+_b[d3]+ _b[d4]+_b[d5]+_b[d6]+ _b[d7]+_b[d8]+_b[d9])

_nl_1: -(_b[d1]+_b[d2]+_b[d3]+ _b[d4]+_b[d5]+_b[d6]+ _b[d7]+_b[d8]+_b[d9])

choi	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0837265	.186135	0.45	0.653	2810913	.4485443


• But one can just use counts!

NormalisedBW

$$\frac{N_x^b - N_x^w}{N_x}$$

• Shown to be linear with parameter estimates

• More complex versions:

(Marley et al 2016 Journal of Choice Modelling 21: 15-24)

An example:

Institutions and policies for enhancing farm household livelihoods: An analysis of the coherence of expert opinion in the East Gangetic Plain.

Bethany Cooper, Lin Crase, Michael Burton, Dan Rigby, Mohamad Jahangir Alam, Avinash Kishore

Item description in BWS

Cheaper farm inputs

Easier access to farm inputs

Higher farm output prices

More stable farm output prices

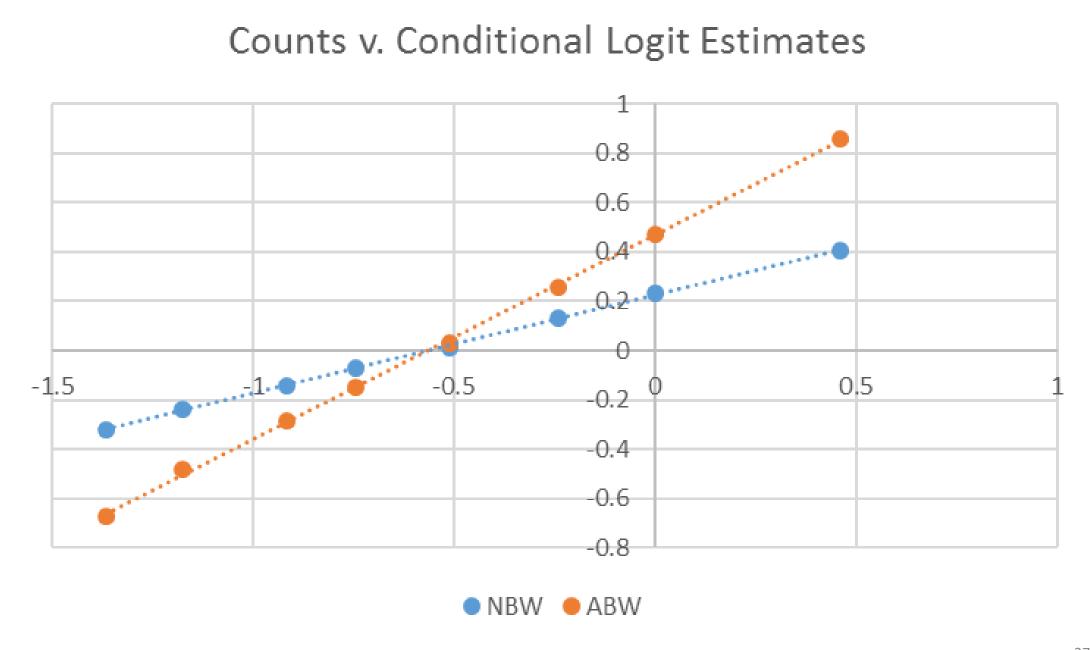
More income from non-farm sources

Farmers adopting different types of crops

Farmers increasing non-crop farming

Easier access to modern technology

Most Effective		Least Effective
0	More variety in the crops grown (e.g. subsidies/credit to grow different crops such as vegetables, oil, pulses etc.)	0
0	Easier access to farm inputs (e.g. quality seeds, in-time irrigation water, electricity; credit; good roads)	0
0	Increasing non-crop farming (e.g. credit/subsidies to support livestock/fishing or non-crop farm activities)	0
0	Higher farm output prices (e.g. more competition among buyers; easier access to markets with more buyers)	0


Conditional logit results: Nepal

Item	Nepal	
Cheaper farm inputs	-0.916***	(0.187)
Easier access to farm inputs	0.459**	(0.185)
Higher farm output prices	-0.511***	(0.185)
More stable farm output prices	-0.242	(0.185)
More income from non-farm sources	-0.745***	(0.184)
More variety in the crops grown	-1.367***	(0.188)
Increasing non-crop farming	-1.176***	(0.188)
Choices	296	
Individuals	37	
LL value	-742.41	

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 Reference item: Easier access to modern technology

Counts analysis

Item	Ν	Best	Worst	NBW	ABW
1	148	28	49	-0.142	-0.286
2	148	70	10	0.405	0.860
3	148	37	35	0.014	0.027
4	148	52	33	0.128	0.258
5	148	34	45	-0.074	-0.149
6	148	16	64	-0.324	-0.673
7	148	15	50	-0.236	-0.482
8	148	44	10	0.230	0.468

Which approach to use?

- Counts
 - Simple
 - Can be used with individual data (to compare across individuals)
- Econometrics
 - Can be used for formal testing of differences across samples
 - Can potentially allow for interactions with sociodemographics (e.g. does age systematically change preferences?)
 - Will have issues with individual data if choices are deterministic

Part 3

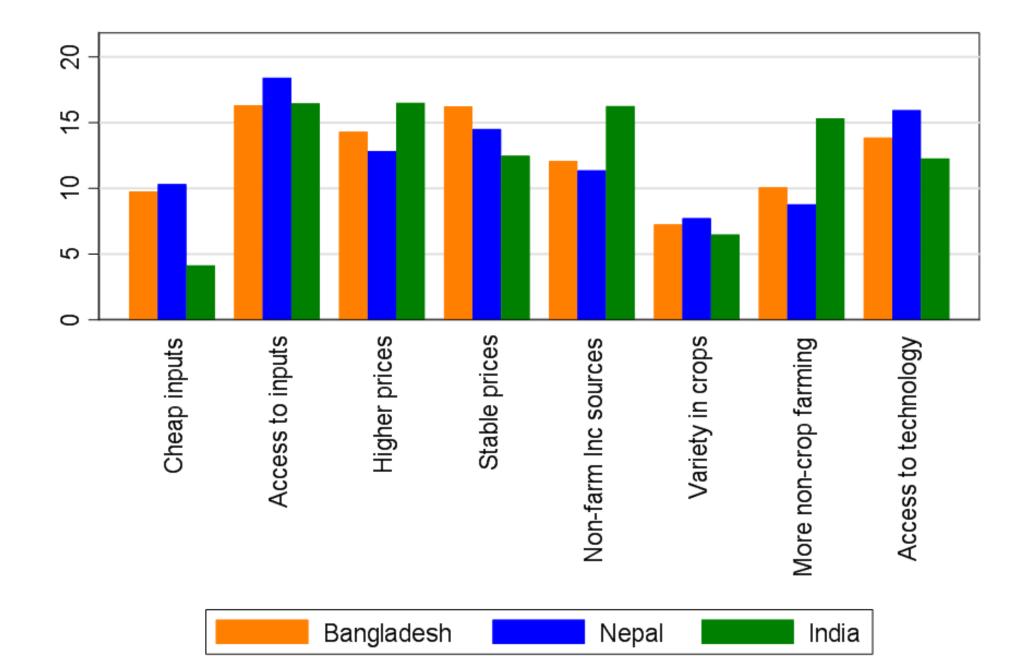
• Interpretation/presentation of results

What do the estimates mean?

- NB They can only inform you about relative weights of objects, not absolute values
- Comparison of estimates gives relative weights on a line, but cannot be used as ratio scale (it has no absolute zero)
- Proposed transformation of Conditional logit estimates:

Scaled Probability Scores (SPS)

Scaled probability scores


$$P_{i} = \frac{\exp(\overline{\beta}_{i})}{1 + \exp(\overline{\beta}_{i})}$$

 $\overline{\beta}_i$ = Parameter estimates defined as mean deviations

P is the probability of picking item *i* as best from a set of two items, where the 'other' item is average.

Then rescale so all J probabilities sum to 100

Sawtooth Software, Inc (2020) The MaxDiff System Technical Paper.

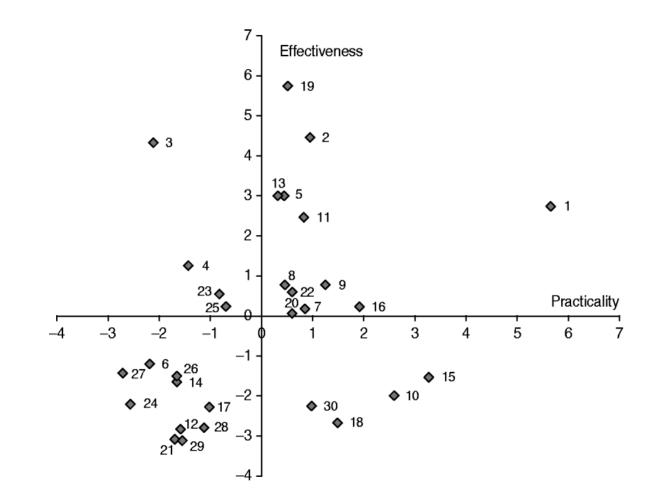
Scaled probability scores

Can now be interpreted as a ratio scale: an SPS twice as large means the item is twice as likely to be picked as best

NB: these scores are influenced by the 'scale' parameter i.e. how much random 'noise' there is in choices.

Higher noise leads to SPS of all items being pushed towards the mean (i.e. 100/8=12.5 for a set with 8 items)

Alternative framings


• One can ask the same people about the same item using different framings

CROSS, P., RIGBY, D., & EDWARDS-JONES, G. (2012). Eliciting expert opinion on the *effectiveness* and *practicality* of interventions in the farm and rural environment to reduce human exposure to Escherichia coli O157.

30 interventions

31 experts interviewed

Separate BWS questions for effectiveness and practicality

Zero-centred scatterplot of mean effectiveness and practicality scores for the 30 control measures

Part 4

• Anchors and absolute rankings and other issues

Are best and worst choices the same?

- Suggestion that people may use a different rating/utility system when picking worst compared to best
- Statistically that can be checked for:
 - Estimate separate models for best and worst, and test if parameters can be restricted to be the same (i.e. stacked data)

Bangladesh data: checking for B=W

Conditional (fixed-effects) logistic regression

Log likelihood = -332.43825	Log likelihood = -328.83119	Log likelihood = -663.98849
choi Coef.	choi Coef.	choi Coef. Std. Err. z
d1 2474472 d2 .6359794 d3 .4123668 d4 .6186124 d5 1177144 d6 7010632 d7 5182924	d1 9437614 d2 .0212516 d3 426686 d4 .2653816 d5 706115 d6 -1.276726 d7 9067428	d1 5718185 .1971666 -2.90 d2 .3880302 .1963993 1.98 d3 .0600605 .1970667 0.30 d4 .4514399 .1957909 2.31 d5 373773 .1955897 -1.91 d6 9624714 .1973258 -4.88 d7 6500818 .1984134 -3.28

Likelihood-ratio test LR chi2(7) = 5.44 Prob > chi2 = 0.6067

Nepalese data

	ixed critects,) logistic	Conditional (fixed-effects) logistic	Conditional (fixed-effects) logistic	regressio	n	
Log likelihood	= -369.18792	2	Log likelihoo	d = -364.4036	5	Log likelihood	= -742 . 5490	9		Number LR chiî Prob > Pseudo	chi2
choi	Coef.	Std. Err.	choi	Coef.	Std. Err.	choi	Coef.	Std. Err.	z	P> z	[95%
d1 d2 d3 d4 d5 d6 d7	5667543 .6264585 3400261 .0904804 4757806 -1.139319 -1.357397	.2575368 .2213878 .2456212 .2305155 .2496633 .2976889 .3192527	d1 d2 d3 d4 d5 d6 d7	-1.776511 .0103175 -1.302457 -1.341913 -1.612275 -2.091312 -1.743905	.3599969 .4541314 .3704032 .3693341 .3602653 .3540555 .3613868	d2 d3 d4 d5 d6	9815239 .4511289 5980513 3650875 8407162 -1.409452 -1.217338	.1873956 .185107 .1859084 .1850661 .1850333 .1883704 .1888133	-5.24 2.44 -3.22 -1.97 -4.54 -7.48 -6.45	0.000 0.015 0.001 0.049 0.000 0.000 0.000	-1.348 .0883 9624 7278 -1.203 -1.778 -1.583

. lrtest m12 (m1 m2)

Likelihood-ratio test

LR chi2(7) = 17.92 Prob > chi2 = 0.0124

Allowing for difference in variance

Heteroscedasti Log likelihood	Number Number LR chi2 Prob >	of groups = (1) =	2368 592 1.37 0.2413			
choi	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
variables						
d1	-1.178	.2704169	-4.36	0.000	-1.708008	6479927
d2	.5269883	.2352974	2.24	0.025	.0658138	.9881628
d3	7494853	.2537402	-2.95	0.003	-1.246807	2521637
d4	5211527	.2612089	-2.00	0.046	-1.033113	0091926
d5	-1.023802	.2635334	-3.88	0.000	-1.540318	5072864
d6	-1.602753	.2649781	-6.05	0.000	-2.122101	-1.083406
d7	-1.383366	.2542077	-5.44	0.000	-1.881604	8851282

.2062068

-.2419079

het

vern

. lrtest m12het (m1 m2)

-1.17

Likelihood-ratio test	LR chi2(6) =	16.54
	Prob > chi2 =	0.0111

.1622499

-.6460658

Assumption: (m12het) nested in (m1, m2)

0.241

Absolute scale

- Respondents have to rate as best and worst in set:
 - But that doesn't mean objects would be acceptable

Anchored best-worst

 You can include an additional question after each BWS question

Least	Feature	Most
Important		Important
	The price paid for the product offers 'value for money'	
	The product bought is washed and sprinkled with running tap water at the market	
	The product is transported to the market in a hygienic way (covered and in a clean container)	у.
	Pesticides have been applied using the recommended dosage for a given symptom	

Considering just these four features...

. .

1 .1

- Some of these four is important
- Some are important, some are not
- ③ All four are important

. . .

How do you use anchored information?

- If they select "None of these four is important" then all lie below a point of indifference, or zero
- If they select " All four are important" then all lie above some point of indifference, or zero
- If they select "Some are important, some are not" then the "best" object lies above, and the "worst" lies below.

Considering just these four features...

- ③ None of these four is important
- ◎ Some are important, some are not
- ③ All four are important

Adding this to estimation...

- Introduces an anchor with a value of zero, and those that are positive are deemed worth having, and those below are not.
- Details are in : Sawtooth Software, Inc (2020) *The MaxDiff System Technical Paper.*

BWS-acceptability

Please consider the 4 control measures below.

Which is the most acceptable to you, and which is the least acceptable?

Assume no change in the cost of your chicken, and that all the measures are equally effective.

Most Acceptable		Least Acceptable
\bigcirc	Neck Skins Neck Skins removed after slaughter	\bigcirc
\bigcirc	"Do Not Wash" All whole, non-frozen, chickens to be sold with prominent "do not wash" labels on the packaging	0
\bigcirc	Vaccination Vaccination of chickens at the farm against Campylobacter	0
\bigcirc	Chilling Chilling the surface of chicken carcass after slaughter	0

Below we list all the control measures to control Campylobacter

In the previous questions you were asked to identify the most and least acceptable control measures from the 4 shown on a page.

Now we would like you to identify which you find Acceptable and which you find Unacceptable.

	Acceptable To Me	Unacceptable To Me
Chlorine wash Dipping chicken carcass into chlorine wash after slaughter	\bigcirc	\bigcirc
Heat Dipping chicken carcass into hot water bath after slaughter	\bigcirc	\bigcirc
Feed Additives Chickens receive food additives to reduce how many of them get Campylobacter	\bigcirc	\bigcirc
Irradiation Exposure of chicken carcass to irradiation after slaughter	\bigcirc	\bigcirc
Ozone Gas Exposure of chicken carcass to ozone gas after slaughter	\bigcirc	\bigcirc
Chilling Chilling the surface of chicken carcass after slaughter	\bigcirc	\bigcirc
Farmers Paid Farmers being paid more for Campylobacter free chickens	\bigcirc	\bigcirc
Frozen All fresh chicken sold to have been previously frozen	\bigcirc	\bigcirc

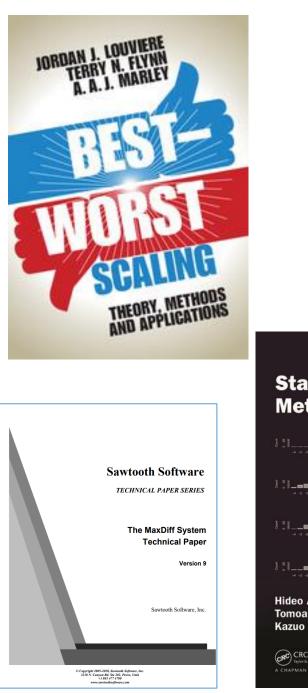
Threshold Question

Anchored BWS Logit Results

Label	ltem Number	Coeff	Std Error
Farmers Paid Farmers being paid more for Campylobacter free chickens	1	1.301	0.040
Chilling Chilling the surface of chicken carcass after slaughter	3	0.836	0.039
Roast-in-the-Bag All whole, non-frozen, chickens to be sold as pre-packed, roast-in-the-bag chickens.	g	0.790	0.039
Neck Skins Neck Skins removed after slaughter	8	0.538	0.039
"Do Not Wash" All whole, non-frozen, chickens to be sold with prominent "do not wash" labels on the packaging	10	0.515	0.038
Vaccination Vaccination of chickens at the farm against Campylobacter	11	0.431	0.038
Heat Dipping chicken carcass into hot water bath after slaughter	4	0.399	0.038
Feed Additives Chickens receive food additives to reduce how many of them get Campylobacter	2	0.390	0.038
Anchor		0.000	N/A
Ozone Gas Exposure of chicken carcass to ozone gas after slaughter	6	-0.305	0.038
Frozen All fresh chicken sold to have been previously frozen	12	-0.470	0.039
Irradiation Exposure of chicken carcass to irradiation after slaughter	7	-0.592	0.039
Chlorine wash Dipping chicken carcass into chlorine wash after slaughter	5	-0.769	0.039

Part 5

• Resources, and software to implement


Texts

Louviere, J. J., Flynn, T. N., & Marley, A. A. J. (2015). *Best-worst scaling: Theory, methods and applications*: Cambridge University Press.

Aizaki, H., Nakatani, T., & Sato, K. (2014). *Stated preference methods* using R: Chapman and Hall/CRC

Sawtooth Software, Inc (2020) *The MaxDiff System Technical Paper*. Available at <u>https://sawtoothsoftware.com/resources/technical-papers/maxdiff-technical-paper</u>

Burton,N., Burton,M., Rigby,D. Sutherland, C.A.M., Rhodes, G. (2019) Best-worst scaling improves measurement of first impressions *Cognitive Research: Principles and Implications* 4(1),36 <u>https://doi.org/10.1186/s41235-019-0183-2</u>

The R Series

Stated Preference Methods Using R

Apple	Orange
1:1 	
Grapes	Danana
It] []
Peach	Melon
] []	š [
Pear	
1 *1 000	
Hideo Aizaki	
Tomoaki Nakata	ani
	a111
Kazuo Sato	
CRC Press	
Taylor & Francis Group	
A CHAPMAN & HALL BOOK	50
	59

Software

- Low minimal requirements
 - Could be paper based and analysed using counts e.g. in excel
- Any online survey software that can present a table of items, and allow you to select 2 from a set (e.g. Qualtrics)
- Any statistical software that can estimate a conditional logit model (e.g. R or Stata)
- Sawtooth software: can design choice sets from object list, format and present in online mode, and has advanced analysis capability

References

- Aizaki, H., Nakatani, T., & Sato, K. (2014). Stated preference methods using R: Chapman and Hall/CRC
- Burton, N., Burton, M., Rigby, D., Sutherland, C.A.M., & Rhodes, G. (2019). Best-worst scaling improves measurement of first impressions. *Cognitive Research: Principles and Implications, 4 (1),* 1 – 10. <u>https://doi.org/10.1186/s41235-019-0183-2</u>
- Burton, N., Burton, M., Fisher, C., González Peña, P., Rhodes, G. & Ewing, L (2021) Beyond Likert ratings: Improving the robustness of developmental research measurement using best-worst scaling *Behavior Research Methods* forthcoming <u>https://doi.org/10.3758/s13428-021-01566-w</u>
- CROSS, P., RIGBY, D., & EDWARDS-JONES, G. (2012). Eliciting expert opinion on the effectiveness and practicality of interventions in the farm and rural environment to reduce human exposure to Escherichia coli O157. *Epidemiology and Infection*, 140(4), 643-654. doi:10.1017/S0950268811001257
- <u>Chrzan K.</u>, <u>Golovashkina N.</u> (2006) <u>An empirical test of six stated importance measures</u> International Journal of Market Research, 48 (6) , pp. 717-740.
- Daly,A., Dekker,T. and Hess,S. (2016) Dummy coding vs effects coding for categorical variables: Clarifications and extensions, Journal of Choice Modelling,21:36-41
- Louviere, J. J., Flynn, T. N., & Marley, A. A. J. (2015). *Best-worst scaling: Theory, methods and applications*: Cambridge University Press.
- Sawtooth Software, Inc (2020) *The MaxDiff System Technical Paper*. Available at <u>https://sawtoothsoftware.com/resources/technical-papers/maxdiff-technical-paper</u>