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Abstract

We simulated pre-breeding in evolving gene banks – populations of exotic and crop types undergoing optimal contri-
bution selection for long-term genetic gain and management of population genetic diversity. The founder population 
was based on crosses between elite crop varieties and exotic lines of field pea (Pisum sativum) from the primary 
genepool, and was subjected to 30 cycles of recurrent selection for an economic index composed of four traits with 
low heritability: black spot resistance, flowering time and stem strength (measured on single plants), and grain yield 
(measured on whole plots). We compared a small population with low selection pressure, a large population with high 
selection pressure, and a large population with moderate selection pressure. Single seed descent was compared with 
S0-derived recurrent selection. Optimal contribution selection achieved higher index and lower population coancestry 
than truncation selection, which reached a plateau in index improvement after 40 years in the large population with 
high selection pressure. With optimal contribution selection, index doubled in 38 years in the small population with 
low selection pressure and 27–28 years in the large population with moderate selection pressure. Single seed descent 
increased the rate of improvement in index per cycle but also increased cycle time.

Key words: Crop breeding, effective population size, evolving gene bank, mean population coancestry, optimal contribution 
selection, pre-breeding, self-pollinating crops.

Introduction

Large genetic diversity exists in wild and landrace relatives 
of crop plants, but most of this diversity is held in gene 
banks and not in active breeding programmes. Gene banks 
are repositories for wild and landrace types from a crop’s 
primary, secondary or tertiary gene pool (Harlan and de 
Wet, 1971). Serious measures have been taken to improve 
long-term survival of seed in crop gene banks. The Svalbard 

Global Seed Vault project (http://www.nordgen.org/sgsv/) is 
located in the permafrost 1300 km north of the Arctic Circle, 
and is the world’s largest secure seed storage. Seed of many 
of the world’s legume crops are stored in this and other gene 
banks (Foyer et al., 2016). The question that often arises is: 
how best to use these global genetic resources to improve crop 
breeding and crop production?
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Many crop breeding programmes have narrow genetic 
diversity (Cowling, 2013), especially grain legumes (Singh 
et al., 2014). Genetic resources, especially wild or landrace 
lines from the primary gene pool, will play an important 
role in future crop improvement especially with the help of 
molecular genetic technologies (Tester and Langridge, 2010). 
‘Advanced backcross QTL’ with whole-genome markers aids 
the incorporation of useful quantitative alleles into elite 
breeding programmes (Tanksley and Nelson, 1996). Allelic 
variation can be identified in gene bank collections for key 
phenotypic traits such as flowering time (Keilwagen et al., 
2014). ‘Exotic genetic libraries’ were proposed to enhance 
genetic diversity available to breeders (Zamir, 2001). Breeding 
efforts to improve the yield, disease resistance and quality of 
several grain legumes are constrained by a low level of genetic 
diversity in breeding programmes (Croser et al., 2003; Singh 
et al., 2014). Genetic resources have improved the range of 
adaptation, disease resistance and quality of many grain leg-
ume species, but the question remains: how best to exploit 
these resources in the future (Siddique et al., 2013)?

Plant breeders are reluctant to cross outside of elite pools, 
because migration of potentially valuable alleles from exotic 
germplasm into elite breeding pools is usually accompanied by 
a decrease in economic performance (Rasmusson and Phillips, 
1997). Controlled backcrossing can be used to manage the 
migration of positive alleles from wild to domestic populations 
while reselecting for domestication traits (Cowling et al., 2009). 
However, it is not certain that valuable donor alleles, especially 
those with quantitative effects, will survive the backcrossing 
and selfing process as a result of linkage disequilibrium, small 
population size and genetic drift (Cowling, 2013). Donor alleles 
are subject to interactions with the genetic background of the 
recurrent parent, which may result in unsuccessful outcomes 
of backcrossing (Hospital, 2005). Negative donor alleles may 
be linked to the target donor alleles, leading to ‘linkage drag’ 
and lower commercial performance than the recurrent variety 
(Hospital, 2005). This problem is exacerbated by the large link-
age blocks found in elite breeding programmes of self-polli-
nating crops, which are 200 times larger than in out-crossing 
species such as maize (Rostoks et al., 2006). Rapid cycles of 
recurrent selection will increase the frequency of effective 
recombination compared with backcrossing, and this will help 
to break up linkage blocks and reduce linkage drag.

To help make exotic alleles available to breeders and avoid 
extensive backcrossing, we propose active pre-breeding in 
‘evolving gene banks’ – populations of exotic and crop types 
undergoing optimal contribution selection (OCS) for long-
term genetic gain and retention of population genetic diver-
sity. The evolving gene bank is based on the ‘animal model’ 
of breeding, which exploits information from relatives to 
estimate breeding values of each related individual in the 
pedigree (Lynch and Walsh, 1998). In the animal model, the 
accuracy of predicted breeding values is increased through the 
use of relationship information, normally from pedigrees, but 
potentially also from ‘realised’ (genomic) relationship infor-
mation (Hayes et al., 2009). A version of the animal model 
for self-pollinating crops included both crossing and selfing 
relationships in the pedigree, and resulted in high accuracy of 

prediction and potentially high rates of genetic improvement 
in S0-derived recurrent selection for a low heritability trait in 
Pisum sativum L., field pea (Cowling et al., 2015).

The success of evolving gene banks is highly dependent on the 
method of selection. Truncation selection is predicted to maxi-
mize genetic merit in the offspring generation. However, this is 
generally not the best strategy for maximizing long-term genetic 
gain, because the highest-ranked individuals tend to be closely 
related. Lack of attention to genetic diversity will generally lead 
to reduced opportunity for genetic gains in later generations.

OCS provides a potential solution to this problem. OCS 
aims to increase the rate of genetic gain in a breeding pop-
ulation for a given rate of inbreeding by optimizing the 
genetic contribution of each individual to the next generation 
(Henryon et al., 2014, 2015; Woolliams et al., 2015). Selection 
is based not only on high genetic merit, but also on weighted-
average relationship of the selected individuals. This can be 
done in a manner that maximizes next-generation genetic 
gains for a nominated parental coancestry (Meuwissen, 1997; 
Grundy et al., 1998), or it can involve a nominated balance 
between next-generation genetic gains and parental coances-
try (Kinghorn et al., 2002; Kinghorn, 2011). In addition to 
animal breeding, OCS has been applied to out-crossing for-
est tree species (Hallander and Waldmann, 2009; Kerr et al., 
2015), but not yet to self-pollinated crop species. Useful 
improvements in OCS may be possible through addition of 
genomic relationship information (Woolliams et al., 2015).

In OCS, there is no simple method to calculate the relative 
emphasis to place on genetic gain versus genetic diversity in 
order to maximize genetic merit at a given future generation. 
However, this can be estimated using stochastic simulation, as 
we have done in this paper.

We modelled recurrent selection for an economic index 
beginning from a hypothetical base population made up of 
crosses between exotic lines from the primary gene pool (wild 
or landrace types) and elite crop varieties. The selection index 
included traits in field pea with known or estimated herit-
ability and genetic and phenotypic correlations on a single 
plant basis (Beeck, 2005; Beeck et  al., 2008a, b; Cowling 
et al., 2015). We included plot grain yield in the index, which 
extended selection cycles by one year. For the first time in 
self-pollinating crops, we applied OCS to improve long-term 
genetic progress and manage population coancestry, and 
compared OCS to truncation selection with random or assor-
tative mating. We compared small and large pre-breeding 
populations, various selection intensities, and various levels 
of selfing within each cycle of selection. We explored the util-
ity of OCS to improve long-term genetic gain and manage 
genetic diversity in evolving gene banks.

Materials and methods

Population size
Three population types were compared in these studies: (i) a small 
population with 250 progeny per cycle and low selection pressure 
of 50 matings per cycle and 5 progeny per mating (small-low); (ii) 
a large population with 1000 progeny per cycle and high selection 
pressure of 20 matings per cycle and 50 progeny per mating (large-
high); and (iii) a large population with 1000 progeny per cycle and 
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moderate selection pressure of 50 matings per cycle and 20 progeny 
per mating (large-moderate). These populations represent a range 
of breeding costs from low budget (small-low) to high budget (large-
high and large-moderate), and are feasible scenarios for evolving 
gene banks in a range of contexts for crop pre-breeding.

For the small-low and large-moderate populations, a founder popu-
lation of 100 individuals was generated (see ‘Simulation of individual 
plants’, below) and ranked on economic selection index. One-half of 
the founders were randomly assigned to elite status and one-half were 
assigned to exotic status. Random mating was then simulated between 
elite and exotic founders, always using one elite and one exotic par-
ent in each mating and using each founder parent once only, to begin 
the recurrent selection process (see ‘Simulation of individual plants’, 
below). For the large-high population, the founder population was 
reduced to 40 individuals and 20 matings. The cross progeny are des-
ignated S0 progeny following the nomenclature for segregating cross 
progeny from heterozygous parent plants; the F2 generation is equiva-
lent to S0 when the parents are inbred (Bernardo, 2010).

Economic selection index
Four traits in field pea contributed to the economic selection index: 
three can be measured on a single plant basis (black spot resistance, 
stem strength and flowering time) and one is measured on a plot 
basis (grain yield). We assumed knowledge of the starting mean 
values, standard deviations and narrow-sense heritability for these 
traits in the base population according to results from previous 
research (Beeck, 2005; Beeck et al., 2008a, b; Cowling et al., 2015) 
and our best estimates (Table 1). In our simulated BLUP analysis, 
true breeding values were generated for every plant in the pedigree 
including selfs as described below. Phenotypes were measured on 
single Sx plants or on Sx-derived Sx+1 plots (Fig. 1). For grain yield, 
we used records from Sx-derived Sx+1 plots to predict breeding values 
of Sx individuals (Bernardo, 2010; Walsh and Lynch, 2016b). We 
assumed initial values for all traits on Sx plants (Table 1). The genetic 
and phenotypic correlations between traits were also based on pub-
lished information or best available knowledge (Table 2).

The emphasis placed on each trait was calculated using the desired 
gains approach (Brascamp, 1984), implemented using the program 
Desire (Kinghorn, 2016b). This involved specifying the desired relative 
responses to selection on phenotypic index (not exploiting information 
from relatives) for the traits involved, but with constraint to adhere to 
the response surface of all possible outcomes. The result involved both 
the index weights b  that were predicted to give the outcome specified, 
plus the implied economic weightings e  that result in index weight-
ings b  when applying classic selection index theory (Brascamp, 1984; 
Kinghorn, 2016b). These economic weightings (Table 1) were adopted 
for calculation of BLUP-based economic index values, although 
in fact the pattern of response across traits could deviate from that 

desired because of use of information from relatives. The index weight 
was used for calculating the phenotypic index (Table 1).

Generation interval vs cycle time in breeding annual 
self-pollinating crops
The term ‘generation interval’ from animal breeding must be used 
cautiously in annual self-pollinating crops, because several genera-
tions of selfing may occur within each cycle of recurrent selection. 
In this paper, the term ‘cycle time’ refers to the duration of each 
cycle of recurrent selection, and ‘generations’ refers to selfing gen-
erations within cycles. We modelled selfing crop breeding with 0, 3 or 
5 generations of single seed descent within cycles, resulting in cycle 
times of 2, 3 and 4 years and 30, 20 and 15 cycles over 60 years. The 
Sx+1 generation (Fig. 1) in each cycle was devoted to a field trial for 
measuring yield (Table 3). In order to calculate cycle time in years, 
we assume that each selfing generation during single seed descent 
can be completed in 4 months and that sufficient self  seed can be 
harvested from a single Sx plant to sow a plot of Sx+1 seed for yield 
measurement in the following year (Table 3). Models were compared 
for the small-low, large-high, and large-moderate population.

Selection criteria
Two criteria were available on individuals to make selection deci-
sions for individual i :

Phenotypic index:

 Pindex b Pi
j

nTraits

j i j=
=

∑ . ,
1

 

where b  is a vector of selection index weights, as described above, 
and Pi j, is the phenotype of individual i  for trait j.

Best linear unbiased prediction (BLUP)-estimated breeding 
value index:

 BLUPindex e EBVi
j

nTraits

j i j=
=

∑
1

. ,  

where e  is a vector of implied economic weights, as described above, 
and EBVi j,  is a vector of estimated breeding values for individual i  
calculated by BLUP.

As shown in the formulae above, Pindexi  was calculated from the 
phenotypes of the four traits, and BLUPindexi  was calculated from 
estimated breeding values based on multiple-trait BLUP analysis on 
phenotypes and pedigree information generated in the simulations. 
Modelling of all traits was based on the starting values and genetic 
parameters in Tables 1 and 2.

Table 1. Starting values for mean, standard deviation and narrow-sense heritability in the base population for four traits, and economic 
weight for each trait used to calculate the selection index

The emphasis placed on each trait was calculated using the desired gains approach (Brascamp, 1984), implemented using the program Desire 
(Kinghorn, 2016b). The index weight was used for calculating the phenotypic index. For each trait except flowering time, the selection goal was 
for increasing positive values. For flowering time, the selection goal was neutral – to maintain the average over time. For blackspot resistance, 
the starting value (100%) represents the average level of disease in the base population (increases in resistance through selection will increase 
this value above 100% over time).

Trait Unit Starting value Standard deviation Narrow-sense 
heritability

Economic weight Index weight Selection goal

Blackspot resistance % 100 20 0.3 0.1409 0.0403 increase
Stem strength mm 1.2 0.3 0.3 4.124 1.115 increase
Flowering time days 80 20 0.5 -0.02 -0.005 neutral
Grain yield t ha-1 1.5 0.25 0.3 4.265 1.616 increase
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Simulation of individual plants
Simulations were carried out using the PopSim module of Genup 
(Kinghorn, 2016a), which was developed and used in the context 
of the animal model (Webb et al., 2012). PopSim was modified to 
include OCS (Matesel) as an option for mate selection and mate 
allocation decisions at each breeding cycle, following the approach 
of Kremer et al. (2010). PopSim was modified to handle bisexuality 
and selfing as required for self-pollinating crops.

Breeding values can be estimated for Sx individuals provided they have 
measured relatives in the analysis (Walsh and Lynch, 2016a). Phenotypes 
were measured on single Sx plants or on Sx-derived Sx+1 plots (Fig. 1). 
Under certain conditions, records from the Sx-derived Sx+1 generation 
may be used to predict genetic values of Sx individuals (Bernardo, 2010; 
Walsh and Lynch, 2016b). Once the Sx plants were selected on the basis 
of index, then Sx+1 remnant seeds were used in crossing (Fig. 1).

For selfing that occurred before phenotyping, PopSim generated a sin-
gle random self progeny from each plant to start the next selfing genera-
tion. This is equivalent to single seed descent (Allard, 1960). The number 
of generations of selfing before phenotyping and selection was defined as 
Sgen and we compared simulations with Sgen=0, 1, 2, 3, 4 and 5. In annual 
self-pollinating crops, selfing normally occurs after selection and before 
crossing, and therefore remnant self seed must be used in crossing. Selfing 
after selection of Sx individuals, in order to obtain seed for crossing, was 
defined as Ssel and we compared simulations with Ssel=0 and 1. We also 
simulated the typical case in animals, where Sgen=0 and Ssel=0.

In Popsim, a foundation population is simulated with phenotypes 
generated as follows:

 P X A Ei j j i j i j, , ,= + +  

where
 A RanAi j i j Aj, , .= σ  

 E RanEi j i j E j, , .= σ  

and ,Pi j  is phenotype of individual i for trait j; X j  is initial popula-
tion mean for trait j; σAj  is the standard deviation among additive 

genetic values of individuals for trait j  which equals the square 
root of (narrow-sense heritability times population phenotypic 
variance); ,RanAi j  is the j th  element of a vector of normal devi-
ates that are correlated within individuals ( ),.RanAi  by the additive 
genetic correlations among the traits involved; σE j  is the standard 
deviation among environmental deviations of individuals for trait j  
which equals the square root of (1 minus narrow-sense heritability 
times population phenotypic variance); ,RanEi j  is the j th  element 
of a vector of normal deviates that are correlated within individu-
als ( ),.RanEi  by the environmental correlations among the traits 
involved. We ignored fixed effects, such as sex, season, known QTL 
and common environment, which were assumed to be zero.

The foundation (base) population was generated in the first breed-
ing cycle. The numbers of individuals generated complies with user 
settings for initial breeding population size.

For each subsequent breeding cycle, phenotypes of progeny were 
generated as follows [in crossing, each plant was used as either a 
male (sire) or female (dam), and in selfing, a plant was used both as 
a sire and a dam]:

 

P
A A

RanA
F Sire i F Dam i

i j
Sire i j Dam i j

i j

,
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) ( ( )

=
+

+
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where Fi  is the inbreeding coefficient of individual i.
The average and standard deviation of index and popula-

tion coancestry was recorded for ten replicate runs per cycle over  

Table 2. Estimated genetic and phenotypic correlations between 
traits applied to the base population

Phenotypic correlations are above the diagonal; genetic correlations 
are below.

Trait Blackspot 
resistance

Stem 
strength

Flowering 
time

Grain  
yield

Blackspot 
resistance

- −0.05 0.25 0.15

Stem strength −0.1 - 0.0 0.1
Flowering time 0.3 0.0 - −0.1
Grain yield 0.2 0.15 −0.15 -

Fig. 1. Generalized model for index selection in annual crop breeding, where selfing (black lines) occurs within cycles to produce self progeny 
(black circles). Crossing (red lines) and cross progeny (red circles) signify the beginning of the next cycle. In this example, S2 individuals and their S3 
populations (marked in yellow) are phenotyped for target traits, and index selection occurs on the S2. S2-derived S3 seed are used in crossing. In general, 
phenotyping occurs on Sx individuals and/or Sx-derived Sx+1 plots (yellow) and index selection occurs on the Sx.
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30 cycles for each model in PopSim (See Supplementary Table S1 at 
JXB online). In the first year, crossing occurred among exotic and 
elite varieties to generate the base population, after which recurrent 
selection began. Therefore cycle 31 represents 30 cycles of recurrent 
selection (Supplementary Table S1).

Selection strategy and mating designs
The standard method was truncation selection based on index, fol-
lowed by random or assortative mating among the selected parents. 
In truncation selection, each selected parent was used only once in 
crossing. For the small-low and large-moderate population, the top 
100 parents for index were selected to generate 50 matings per cycle. 
For the large-high population, the top 40 parents for index were 
selected to generate 20 matings per cycle. We also compared trunca-
tion selection based on BLUPindexi  (an index of estimated breed-
ing values) with truncation selection based on Pindexi  (an index of 
phenotypic values).

For the first time in a self-pollinating crop, we used optimal 
contribution selection (OCS) to manage long-term genetic gain 
and genetic diversity, and compared this with truncation selec-
tion. OCS was based on the breeding programme implementation 
platform ‘Matesel’ (Kinghorn and Kinghorn, 2016). Matesel dic-
tates which individuals to select and the actual mating allocations 
and/or selfings to be made. Graphical representation of  key out-
comes aids the user to dynamically edit the objective function, 
and thus steer the outcome to a solution that meets the breeding 
goal (Fig. 2).

We edited the objective function in Matesel to achieve different 
outcomes. This involved changing the balance between progeny 
index (reflecting genetic gain) and mean parental coancestry. The 
point at the top-right of Fig. 2 represents the mating list that maxi-
mizes genetic gain under any constraints specified. This will involve 
selection of the fewest possible best plants with no regard to genetic 
diversity. The point at the bottom-left of the graph represents the 
mating list that maximizes genetic diversity. This will involve selec-
tion of many plants, but with higher contributions from those that 
are less related to the rest of the material selected. The curved fron-
tier shows the range of optimal solutions across all levels of balance 
between these two key factors. In this case the balance strategy is 
specified on a scale from 0 degrees (top-right) to 90 degrees (bottom-
left), and the solution shown is for 25 target degrees.

Selected parents were used either once only in crossing, which 
was directly comparable to truncation selection in terms of  number 
of  unique individuals in crossing, or used up to a maximum of five 
matings (but within the same cycle), as determined by OCS, which 
was a more aggressive approach to allow stronger improvements 
in index.

The balance between high selection intensity and low popula-
tion coancestry was varied by using target 45  degrees (to empha-
sise improvement in index) and target 60 degrees (to emphasise low 
population coancestry).

Population inbreeding and coancestry
As PopSim progressed through simulation of  each cycle of  recur-
rent selection, it calculated the mean population index and pop-
ulation coancestry at the end of  each cycle. Parental coancestry 
is directly related to genetic diversity, effective population size 
and the rate of  inbreeding (Kinghorn et  al., 2008). The rate of 
inbreeding ( )∆F  is related to the inverse of  effective population 
size ( ) :Ne

 ∆ =F
Ne

1
2

 

In an ideal population,

 1
2 2N

x x

e

=
’  

where x  is a column vector of relative contributions of candidate 
individuals, summing to unity. For example, for four unrelated par-
ents used equally:

Table 3. Cycle times in the plant model with 0, 3, and 5 generations of single seed descent within cycles

Black spot resistance, stem strength, and flowering time were recorded on single pea plants in the next-to-final generation within each cycle, 
and grain yield was recorded the following year in field plots sown with self seed harvested from these plants.

Sgen Year 1 Year 2 Year 3 Year 4 Year 5

0 Cycle 1 starts: Field trial S0- Cycle 2 starts: Field trial S0- Cycle 3 starts:
Cross | S0 | derived S1 bulks Cross | S0 | derived S1 bulks Cross | S0 |

3 Cycle 1 starts:  S1 | S2 | S3 | Field trial S3- Cycle 2 starts:  S1 | S2 | S3 |
Cross | S0 | derived S4 bulks Cross | S0 |

5 Cycle 1 starts:  S1 | S2 | S3 |  S4 | S5 | Field trial S5- Cycle 2 starts:
Cross | S0 | derived S6 bulks Cross | S0 |

Fig. 2. A screenshot of a response frontier as displayed in Matesel. The 
curve is the frontier of optimal contributions, where each point on the 
frontier represents an optimal mating list for the corresponding relative 
emphasis on progeny index and parental coancestry. The top-right of the 
frontier is 0 degrees, with full emphasis on progeny index, and the bottom-
left is 90 degrees, with full emphasis on lowered parental coancestry. The 
solution has settled on the frontier at the 25 degree ‘Target Degree’ line.
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 1
2 2

1
8N

x x

e

= =
’  

Mean parental coancestry ( )f  is x Ax’
2

 where A  is the numerator 

relationship matrix among candidate individuals. Parental coances-

try thus improves on x x’
2

 for managing inbreeding rate, and 

hence genetic diversity, as it accounts for the relationship between 
individuals.

We use mean parental coancestry ( )f  as a measure of genetic 
diversity in the population during recurrent selection. High popu-
lation coancestry (approaching 1)  indicates that most population 
diversity has been utilised for improvements in index. In graphical 
presentations, we use ‘1 − coancestry’ ( )1− f  to view the amount of 
genetic diversity remaining in the population.

Results

Comparison of the animal model with the plant model, 
with various levels of selfing

For the small-low population, the economic index was ~23.8 
in the base population (Supplementary Table S1).

The normal situation in animals, with Ssel=0 and Sgen=0, 
showed the following outcomes after 30 cycles of recurrent 
selection (Fig. 3A):

(i)    Truncation selection with assortative mating 
(BlupTrunc_ASS) achieved slightly higher index (51.4) 
than with random mating (49.9) (BlupTrunc_RAN), 
but with much higher population coancestry (coances-
try increased from 0.24 with random mating to 0.48 
with assortative mating). Truncation selection based on 
phenotypic values (PhenoTrunc_RAN) achieved lower 
index (48.4) but also lower population coancestry (0.15).

(ii)  OCS with emphasis on low coancestry (target 60 degrees) 
and maxuse=1 (BlupOCS_60Deg_Max1) resulted in the 
lowest population coancestry (0.13) but also the lowest 
gain in index (43.6) after 30 cycles. This scenario con-
served the most genetic diversity in the population.

(iii)  OCS achieved the highest index (59.8) with empha-
sis on high index (target 45  degrees) and maxuse=5 
(BlupOCS_45Deg_Max5), with similar population 
coancestry (0.50) to truncation selection with assortative 
mating (BlupTrunc_ASS).

(iv)  OCS achieved a reasonable compromise for conservation 
of genetic diversity when emphasis was on low coances-
try (BlupOCS_60Deg_Max5), with index 53.8 and pop-
ulation coancestry 0.26 after 30 cycles.

In the plant model based on recurrent selection in P.  sati-
vum (Cowling et al. 2015) with Ssel=1 and Sgen=0 (Fig. 3B), 
the model shows similar results to the situation in animals, 
where Ssel=0 and Sgen=0 (Fig.  3A), but with an increase in 
population coancestry of ~0.08 and a small decrease in 
index (1 to 2 index units) after 30 cycles. The highest index 
(58.1) was achieved by OCS with emphasis on high index 
(BlupOCS_45Deg_Max5), but with population coances-
try 0.57. Once again, a reasonable compromise for genetic 

resource conservation was obtained by OCS with emphasis 
on low coancestry (BlupOCS_60Deg_Max5), with index 51.2 
and population coancestry 0.33 after 30 cycles of recurrent 
selection.

The effect of  selfing with Sgen=0, 1, 2, 3, 4 and 5 on 
index and coancestry at the end of  30 cycles of  recurrent 
selection is shown in Fig.  3C. Under all scenarios, there 
was a large increase (8–9 units) in economic index with 
one generation of  selfing (Sgen=1), and lower incremen-
tal increases with further selfing. For OCS with empha-
sis on high index (BlupOCS_45Deg_Max5), index values 
increased from 58.1 (Sgen=0), 67.1 (Sgen=1), 71.6 (Sgen=3) to 
72.8 (Sgen=5). Population coancestry increased from 0.57 
(Sgen=0), 0.61 (Sgen=1) to 0.62 (Sgen=3) and then reduced 
slightly to 0.60 (Sgen=5). The same pattern occurred in all 
OCS scenarios, sometimes with a small drop in index at 
Sgen=5 (Fig. 3C).

Comparison of S0-derived with S3-derived and S5-
derived recurrent selection in the small population

In the small-low population with Sgen=0 and Ssel=1, the index 
doubled in 38 years with population coancestry 0.41 in the 
high-index OCS option (BlupOCS_45Deg_Max5) (Fig. 4A). 
In contrast, doubling of index for truncation selection with 
random mating took 52 years (population coancestry 0.34), 
and in the OCS solution which emphasized coancestry 
(BlupOCS_60Deg_Max5), doubling time took 52 years with 
population coancestry 0.29.

There was a higher index achieved per cycle with selfing 
to Sgen=3 (Fig.  4B), but this advantage was reduced by the 
longer (3-year) cycles, with doubling of index in 36 years and 
population coancestry 0.34 in the high-index OCS option 
(BlupOCS_45Deg_Max5). In the OCS solution favouring 
coancestry (BlupOCS_60Deg_Max5), doubling time took 
50 years with population coancestry 0.25.

There was no benefit from continuing single seed descent 
to Sgen=5 (Fig. 4C), with doubling of index in 48 years and 
population coancestry 0.33 in the high-index OCS option 
(BlupOCS_45Deg_Max5).

Comparison of S0-derived with S3-derived and S5-
derived recurrent selection in the large population with 
high selection pressure

With no selfing before phenotyping (Sgen=0), truncation selec-
tion with random or assortative mating (BlupTrunc_RAN 
and BlupTrunc_ASS) caused a rapid increase in index for 
~15 years but then approached a plateau after 40 years. The 
large-high population lost most of its original genetic diversity 
with population coancestry 0.98 at 60 years (Fig. 5A). This 
reflects the tendency for truncation selection on BLUP pre-
dicted breeding values to select close relatives and lose genetic 
diversity over time, especially in populations with small effec-
tive population size and high selection pressure. In contrast, 
the index doubled in 32  years with population coancestry 
0.63 in the high-index OCS option (BlupOCS_45Deg_Max5) 
(Fig. 5A).
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Selfing to Sgen=3 improved outcomes in the large-high pop-
ulation, but once again truncation selection showed major 
loss of genetic diversity with population coancestry 0.90 at 
60  years (Fig.  5B). However, the index doubling time was 
reduced to 27  years and population coancestry 0.48 in the 
high-index OCS option (BlupOCS_45Deg_Max5). There was 
an advantage for conserving genetic diversity by using the 
high-index OCS option with maxuse=1 (BlupOCS_45Deg_
Max1), with index doubling time 29  years and population 
coancestry 0.30.

There was no benefit from continuing single seed descent 
to Sgen=5 (Fig. 5C), with doubling of index in 36 years and 
population coancestry 0.50 in the high-index OCS option 
(BlupOCS_45Deg_Max5).

Comparison of S0-derived with S3-derived and  
S5-derived recurrent selection in the large population 
with moderate selection pressure

The large-moderate population produced the best results 
in terms of index and coancestry at 60 years. In the case of 
Sgen=0, truncation selection with assortative mating (Blup 

Trunc_ASS) again approached a plateau with popula-
tion coancestry 0.91 after 60 years (Fig. 6A). OCS, in con-
trast, achieved a doubling of the index in 28  years with 
population coancestry 0.42 in the high-index OCS option 
(BlupOCS_45Deg_Max5) (Fig. 6A). In the OCS solution for 
improved retention of genetic diversity (BlupOCS_60Deg_
Max5), doubling time took 38  years with population 
coancestry 0.27.

Outcomes improved slightly with selfing in the large-mod-
erate population when Sgen=3 (Fig. 6B). The index doubled 
in 27  years with population coancestry 0.29 in the high-
index OCS option (BlupOCS_45Deg_Max5). With trunca-
tion selection, genetic diversity was lower than with most 
OCS options and genetic progress was beginning to slow at 
60 years (Fig. 6B).

Single seed descent to Sgen=5 (Fig. 6C) resulted in doubling 
of the index in 36 years with population coancestry 0.29 in 
the high-index OCS option (BlupOCS_45Deg_Max5).

If  single seed descent were accelerated to five genera-
tions per year, thereby reducing cycle time for Sgen=5 from 
4 to 3 years, the result for Sgen=5 would be the same as with 
Sgen=3, that is, the index would double in 27  years with 

Fig. 3. Modelling of 30 cycles of S0-derived recurrent selection in the small population based on (A) the animal model with Ssel=0 and Sgen=0, (B) 
the plant model with Ssel=1 and Sgen=0, and (C) index achieved at 30 cycles in the plant model for Sgen=0, 1, 2, 3, 4 and 5. Size of dots is in linear 
proportion to 1 – population coancestry (‘1−Coancestry’). ‘BlupTrunc’, truncation selection based on index; ‘PhenoTrunc’, truncation selection based on 
phenotypic values; ‘RAN’, random mating; ‘ASS’, assortative mating; ‘BlupOCS’, index-based optimal contribution selection; ‘Degree’, OCS parameter 
which changes emphasis on index or coancestry; ‘45Deg’, OCS option 45 degrees which favours index; ‘60Deg’, OCS option 60 degrees which favours 
low population coancestry; ‘Maxuse’, OCS option which limits the maximum use of parents; ‘Max1’, OCS option for maximum single use of each parent; 
‘Max5’, OCS option for maximum five uses of each parent.
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population coancestry 0.29 in the high-index OCS option 
(BlupOCS_45Deg_Max5) (Supplementary Table S1). There 
was no advantage to additional generations of single seed 
descent.

Discussion

We evaluated OCS for management of  long-term genetic 
gain and genetic diversity in evolving gene banks, which 
are diverse pre-breeding populations of  self-pollinating 
crops. The evolving gene bank begins by intermating elite 
and exotic lines, thereby moving the exotic genes from 
the gene bank to the field in a semi-adapted genetic back-
ground. The population is then selected for improved 
economic index over many cycles of  recombination and 
selection, while retaining exotic genetic diversity for future 
discovery and exploitation. The methods developed here 
are potentially valuable for self-pollinating grain legumes, 
which are known for lack of  genetic diversity in elite breed-
ing programmes (Singh et al., 2014). The motivating exam-
ple was recurrent selection based on the animal model in 
field peas, a highly self-pollinating crop (Cowling et  al., 
2015). This is the first report of  the use of  OCS in annual 
self-pollinating crops.

Most models of short-term selection response are based on 
the assumptions of the infinitesimal model – that each trait 
is controlled by an infinite number of loci each with infini-
tesimal and additive effects (Walsh and Lynch, 2016c). When 
effective population size was reduced from infinity to ten, 
response to selection ceased after 20 to 30 generations (Walsh 
and Lynch, 2016c). We also show a plateau in index after ~20 
cycles in the large-high population (Fig. 5). Many crop breed-
ing programmes have an effective population size of ten or 
less (Cowling, 2013) and risk reaching a plateau in genetic 
improvement prematurely. The aim should be to increase 
effective population size in evolving gene banks, so that they 
more closely meet the assumptions of the infinitesimal model 
and improve the chances of discovering and retaining new 
valuable exotic alleles.

In this study, OCS consistently out-performed truncation 
selection in terms of higher economic index and lower popu-
lation coancestry in the long term (30 cycles). This is expected 
because BLUP-derived index values tends to rank individu-
als from the same pedigree closely together, which are then 
selected as parents, whereas OCS favours retention of genetic 
diversity for long-term gain by selecting parents with diverse 
pedigrees. S0-derived recurrent selection, in combination with 
OCS (BlupOCS_45Deg_Max5), recorded a doubling of the 
economic index in 28 years in the large-moderate population 

Fig. 4. Modelling of 30 cycles of S0-derived recurrent selection in the small population based on (A) the plant model with Ssel=1 and Sgen=0, (B) three 
generations of single seed descent to S3, and (C) five generations of single seed descent to S5. Size of dots is in linear proportion to 1 – population 
coancestry. For abbreviations, see Fig. 3 legend.
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at which time population coancestry was 0.42 (Fig. 6A). By 
relaxing the emphasis in OCS on index and increasing the 
emphasis on lower population coancestry (BlupOCS_60Deg_
Max5), the index doubled in 38 years in the large population 
at which time population coancestry was 0.27 (Fig. 6A).

Selfing within cycles by single seed descent to the S3 in 
the large population increased the rate of increase in index 
per cycle. However, the effects were marginal when taking 
into consideration the delay in cycle time caused by selfing 
(Table  3), so that doubling time was 27  years in S3-derived 
recurrent selection compared with 28  years in S0-derived 
recurrent selection (Fig.  6B, BlupOCS_45Deg_Max5). The 
delay in selection cycles caused by further selfing to S5 was not 
compensated by improvements in index (Fig.  6C). Limited 
selfing was useful but not essential for management of genetic 
improvement and genetic diversity in evolving gene banks. S0-
recurrent selection may be preferred for practical reasons as 
2-year cycles allow more frequent observation of material in 
field trials, less intensive glasshouse or laboratory work for 
single seed descent and therefore lower costs, and more fre-
quent sampling of target environments than 3-year cycles. 
Single seed descent is useful to make pure lines from high 
index plants if  this is important for commercial purposes.

The large population with high selection pressure (20 mat-
ings and 50 progeny per mating per cycle) achieved a poor 

result with truncation selection, and the economic index 
reached a plateau in 40 years (Fig. 5A). This was caused by 
the relatively low effective population size in this treatment 
(maximum 40 parents in matings each cycle). Clearly, it is 
preferable to increase effective population size by increasing 
the number of matings per cycle and number and diversity 
of parents involved in matings. This was simply achieved by 
changing the mating strategy to 50 matings and 20 progeny 
per mating per cycle in the large-moderate population, with-
out changing the field testing budget. The small-low popula-
tion suffered no plateau in economic index with truncation 
selection because its effective population size was large (maxi-
mum 100 parents in matings each cycle). If  the budget for 
pre-breeding is limited, then a small population with mild 
selection pressure is sufficient to achieve the goals of pre-
breeding in evolving gene banks, as shown here.

We included grain yield in field trials as part of the eco-
nomic index. To be of practical value to elite breeding pro-
grammes in the future, evolving gene banks must undergo 
rapid improvement in yield and adaptation. Yield testing 
delays the minimum cycle time to 2 years for S0-derived recur-
rent selection, 3 years for S3-derived recurrent selection, and 
4 years for S5-derived recurrent selection (Table 3).

We assumed a relatively low narrow-sense heritability 
for grain yield of 0.3 (Table  1). With S0-derived recurrent 

Fig. 5. Modelling of 30 cycles of S0-derived recurrent selection in the large population with high selection pressure based on (A) the plant model 
with Ssel=1 and Sgen=0, (B) three cycles of single seed descent to Sgen=3, and (C) five cycles of single seed descent to Sgen=5. Size of dots is in linear 
proportion to 1 – population coancestry. For abbreviations, see Fig. 3 legend.
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selection (2-year cycles) based on OCS for economic index, 
grain yield doubled to 3 t ha-1 in 44 years (average 2.4% per 
year) in the high-index OCS option (BlupOCS_45Deg_Max5) 
(Supplementary Table S1). For comparison, genetic improve-
ment in grain yield of US hybrid corn doubled from 4 to 8 
t ha-1 (average 1.8% per year) in 55 years from 1945 to 2000 
(Duvick et al., 2004), and grain yield of wheat in Nebraska 
USA increased from 3 to 4.5 t ha-1 (average 0.9% per year) 
over the same time period (Fufa et al., 2005). In our model-
ling with OCS, evolving gene banks appear to serve their dual 
role of conserving genetic diversity for a wide range of traits 
while increasing in yield and other commercial traits.

Grain yield was only one component of the economic 
index. We also included black spot resistance, for which we 
used a narrow-sense heritability of 0.3 (Table  1) based on 
the results of Cowling et al. (2015). We predict a doubling in 
black spot resistance in 22–23 years with S0-derived recurrent 
selection in the high-index OCS option of the large-moderate 
population (BlupOCS_45Deg_Max5) (Supplementary Table 
S1). At the same time, grain yield improved by 60% to 2.4 t 
ha-1 and stem strength improved by 56% over starting val-
ues (Supplementary Table S1). The economic index can be 
adjusted to favour some traits over others (Brascamp, 1984) 
depending on the goal of the breeder and economic value of 
the trait.

In practice, valuable improvements in both yield and black 
spot resistance were achieved in field pea after intercrossing 
diverse parents followed by single seed descent to the F5, with 
disease screening on F5 plants, and yield and disease rating in 
F6 and F7 plots (Adhikari et al., 2014). Our results confirm 
that single seed descent is not essential for long-term genetic 
improvement – 2-year cycles based on S0-derived recurrent 
selection with OCS for an economic index including blackspot 
resistance and yield achieved similar results to 3-year cycles 
based on S3-derived recurrent selection with OCS (Figs. 6A, 
B). With truncation selection in combination with low effec-
tive population size, as found in the large-high population, 
genetic improvement reached a plateau prematurely due to 
a loss of genetic diversity from the population (Figs. 5A, B).

The goal of pre-breeding in evolving gene banks is to con-
serve valuable genetic diversity derived from wild and lan-
drace ancestors, and to improve agronomic adaptation, yield, 
disease resistance and other valuable traits in the population 
so that it becomes useful for commercial crop breeding. OCS 
assists the breeder in monitoring the genetic diversity in pre-
breeding programmes through measurements of population 
coancestry. However, OCS can achieve both rapid genetic 
improvement and retention of genetic diversity in evolving 
gene banks more effectively than BLUP truncation selection. 
The strategy for selection in OCS can be changed to favor 

Fig. 6. Modelling of 30 cycles of S0-derived recurrent selection in the large population with moderate selection pressure based on (A) the plant model 
with Ssel=1 and Sgen=0, (B) three cycles of single seed descent to Sgen=3, and (C) five cycles of single seed descent to Sgen=5. Size of dots is in linear 
proportion to 1 – population coancestry. For abbreviations, see Fig. 3 legend.
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higher genetic diversity or to emphasize progeny index over 
population coancestry (Kinghorn and Kinghorn, 2016). 
Also, the weighting applied to each trait (Table  1) can be 
adjusted using the desired gains approach (Brascamp, 1984). 
If  yield is considered to deserve a higher economic weighting 
than black spot resistance or stem strength, this can be easily 
changed in the economic index.

Potential use of genomic selection in evolving 
gene banks

BLUP selection may be more accurate if  the pedigree relation-
ship matrix is replaced with a genomic relationship matrix 
(Hayes et al., 2009). Similarly, a genomic relationship matrix 
may improve long-term genetic gain when used with OCS 
(Woolliams et al., 2015). Genomic selection may be useful to 
predict breeding values of progeny for which no records exist, 
such as Sx+1 candidate cross progeny, and thereby improve the 
efficiency of breeding in evolving gene banks. Genomic selec-
tion could be used to achieve two or three cycles of recom-
bination on S0 progeny in one year, followed by retraining 
markers, as proposed by Rutkoski et al. (2011). In evolving 
gene banks, the retraining of markers would occur in the 
breeding population and not in a separate training popula-
tion as proposed previously (Rutkoski et al., 2011).

Genomic selection may be important to help break up 
large linkage blocks in evolving gene banks, and avoid the 
rapid reconstruction of the elite genome that occurred dur-
ing pre-breeding of elite and exotic lines of maize (Gorjanc 
et al., 2016). Valuable minor alleles from exotic sources may 
be discovered in evolving gene banks during genomic selec-
tion, and OCS may help the retention and exploitation of 
these valuable exotic alleles during pre-breeding as suggested 
by Gorjanc et al. (2016).

The cost and returns of the evolving gene bank

The small-low population is ideal for pre-breeding in low 
budget situations. Both the small-low population and the 
large-moderate population use 50 matings per cycle and begin 
with crossing among 100 founder parents. Higher investment 
in the large-moderate population for yield testing of 1000 
S0-derived lines is rewarded with shorter doubling time of 
the economic index, and higher rates of yield improvement. 
However, investment in large populations is wasted if  selec-
tion pressure is too high and effective population size is too 
low, as in the large-high population with only 20 matings and 
50 progeny per mating per cycle.

Future potential use of OCS in evolving gene banks

We have compared only a small number of pre-breeding 
strategies to help illustrate the potential of OCS to give sus-
tained genetic improvement. In practice, choice of strategy 
more appropriate to the prevailing scenario should give bet-
ter results. The best strategy can be chosen in the light of the 
time-scale of objectives in relation to genetic improvement 
and management of genetic diversity. Proper implementation 

of OCS will ensure that maximum use of individual plants is 
appropriate to their genetic merit and genetic distinctiveness.

In a practical programme, other issues will need to be accom-
modated simultaneously with OCS, including management of 
known disease resistance alleles; adherence to quarantine bar-
riers in programmes run across locations; and simultaneously 
handling multiple end uses, such as priming the population to 
more efficiently target adaptation to multiple environments or 
different diseases under commercial applications. Also, migra-
tion of new exotic allelic diversity into the evolving gene bank 
can be readily achieved with OCS, so long as effective popula-
tion is high. Genetic drift tends to eliminate migrant alleles in 
populations with low Ne (Cowling, 2013).

Rapid cycle recurrent selection based on BLUP methodol-
ogy with OCS is also conducive to measuring and targeting 
genotype by environment interaction effects in the breeding 
programme. High positive genetic correlations across cycles 
indicate low genotype by environment interaction effects, as 
was the case with predicted breeding values across cycles for 
black spot resistance in field peas (r=0.82) (Cowling et  al., 
2015). However, both negative and positive genetic correla-
tions across sites were evident for yield in genetically uniform 
canola lines (Beeck et al., 2010; Cullis et al., 2010) indicat-
ing strong genotype by environment effects for yield in that 
study. Wherever the environments can be classified, these can 
be treated as multiple end uses for simultaneous selection by 
OCS in the breeding programme.

The opportunities for new crop breeding methods based on 
BLUP-driven technologies are large, given that animal breed-
ers have been developing these technologies since the 1960s 
(van der Werf, 2007) and they are only now beginning to be 
used in crop breeding. This paper has shown that OCS gives 
the control necessary to actively improve evolving gene banks 
for economic traits, while maintaining high levels of genetic 
diversity. Evolving gene banks will increase genetic diversity 
available to grain legume crop breeders in well-adapted and 
high-yielding pre-breeding pools. Evolving gene banks are a 
vehicle for discovery and exploitation of valuable alleles cur-
rently stored in the dormant seeds of wild and landrace grain 
legumes in global gene banks (Foyer et al., 2016).

Supplementary data

Supplementary data are available at JXB online.
Table S1. Mean and standard deviation (SD) from ten runs 

of PopSim at the end of each cycle in each selection type 
(SelType), population size (PopSize), mating type (Mating), 
Ssel, Sgen, maximum use as parent (Maxuse) and target degrees 
(Degree), of population coancestry, population inbreeding 
(F), Index, true breeding value (TBV) for black spot resist-
ance (BSR), TBV for stem strength (SS), TBV for flowering 
time (FT) and TBV for grain yield (GY).
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